Lecture 27: DDH Assumption, Key Agreement, and ElGamal Encryption

- The objective of this lecture is to build key agreement and public-key encryption protocols from the Decisional Diffie-Hellman (DDH) assumption
- Onceover, understand the relationship between the DDH assumption and other computational hardness assumptions like the discrete log assumption and Computational Diffie-Hellman (CDH) assumption

→ ∃ → < ∃ →</p>

Decisional Diffie-Hellman Assumption

- Consider a group (G, \times) with generator g and order n; i.e., $g^n = e$, the identity and $\{g^1, g^2, \ldots, g^n = e\} = G$
- The Decisional Diffie-Hellman (DDH) assumption states that it is computationally infeasible to have a non-trivial advantage in predicting whether the given sample (α, β, γ) ∈ G³ was sampled from the distribution (g^a, g^b, g^r), where a, b, r ∈_R {1,2,...,n}, or (g^a, g^b, g^{ab}), where a, b ∈_R {1,2,...,n}
- Intuitively, given (g^a, g^b) , the element g^{ab} is computationally indistinguishable from the random g^r

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\bullet Alice samples a \in_R \{1,2,\ldots,n\} and sends A := g^a to Bob$
- **2** Bob samples $b \in_R \{1, 2, ..., n\}$ and sends $B := g^b$ to Alice
- Solution Alice computes $k := B^a$ and Bob also computes $k := A^b$

- Given (g^a, g^b) , for an eavesdropper, the distribution of the key $k = g^{ab}$ seems indistinguishable from the random element g^r
- Alice and Bob can perform steps 1 and 2 simultaneously

- Any two-message key agreement protocol can be converted into a public-key encryption scheme
- Gen(): Return a public key pk = A := g^a and a secret key sk = a
- Second Enc_{pk}(m): Compute B := g^b and c := m · A^b. The ciphertext is (B, c)
- Dec_{sk}($\widetilde{B}, \widetilde{c}$): Compute $\widetilde{m} / (\widetilde{B})^a$, where sk = a.

▲御▶ ▲屋▶ ▲屋≯

- The subgroup of k-th residues modulo a prime $p = k \cdot q + 1$, where q is also a prime. When k = 2, it is quadratic residues modulo a safe prime
- 2 For a safe prime $p = 2 \cdot q + 1$, the quotient group $\mathbb{Z}_p^* / \{\pm 1\}$
- A prime-order elliptic curve over a prime field (with some additional technical restrictions)
- A Jacobian of a hyper-elliptic curve over a prime field (with some additional technical restrictions)

★@▶ ★ E▶ ★ E▶ = E

DDH Assumption: Formal Definition

Security Game for DDH.

- **1** The honest challenge samples a bit $u \in_R \{0, 1\}$
- If u = 0, then it samples (α, β, γ) from the distribution (g^a, g^b, g^{ab}), where a, b ∈_R {1, 2, ..., n}. If u = 1, then it samples (α, β, γ) from the distribution (g^a, g^b, g^r), where a, b, r ∈_R {1, 2, ..., n}
- **③** The honest challenge sends (α, β, γ) to the adversary
- Adversary replies back with $\widetilde{u} \in \{0,1\}$ (its guess of the bit u)
- **5** The adversary wins the game if (and only if) $u = \tilde{u}$.
- The DDH assumption states that any computationally efficient adversary only has a small (or, negligible) advantage in predicting the bit *u*

▲御▶ ▲理▶ ▲理▶

Relation with Other Assumptions: Discrete Log

- Suppose (G, ×) be a group generated by g, and discrete log is easy to compute. That is, given X := g^x as input, it is easy to compute x ∈ {1,2,...,|X|} (say, using an algorithm A)
- Using such an algorithm, it is easy to construct a DDH adversary and break that assumption.
 - Our adversary receives (α, β, γ) from the honest challenger
 - 2) Feeds α as input to the algorithm $\mathcal A$ and recovers a

$$\textbf{S} \quad \mathsf{Compute} \ \delta \mathrel{\mathop:}= \beta^{\mathsf{a}}$$

(a) If $\gamma = \delta$, set $\widetilde{u} = 0$; otherwise, set $\widetilde{u} = 1$

- Source Food for thought: Compute the advantage of our adversary
- The contrapositive of this statement is that if DDH is hard for a group, then DL is also hard for that group

(本部) (本語) (本語) (語

- Suppose there is an algorithm that, given $X = g^x$ as input, can determine whether x is even or not
- 2 Note that when $\gamma = g^{ab}$, the exponent ab is even with probability 3/4
- **9** However, when $\gamma = g^r$, the exponent r is even with probability 1/2
- So, using the algorithm mentioned above, we can construct an adversary who has a constant advantage in predicting u
- Food for thought: Construct this adversary and compute its distinguishing advantage

- 人 同 ト 人 ヨ ト - - - ヨ

Relation with Other Assumptions: Computational Diffie-Hellman

- The computational Diffie-Hellman assumption (CDH) states that given (g^a, g^b), where a, b ∈_R {1, 2, ..., n}, it is computationally inefficient to compute g^{ab}
- Note that if CDH is easy in a group, then there is an algorithm to compute g^{ab} from (g^a, g^b). In this group, using this algorithm, an adversary can show that DDH is easy
- The contrapositive of this statement is that if DDH is hard for a group, then CDH is also hard for that group